Skip to content

Cybersécurité Aérienne - Drones Sécurisés

Sécurisation des systèmes de drones autonomes contre les cyberattaques et vulnérabilités.

Vision Cybersécurité

Mission Critique

"Développer des systèmes de drones avec sécurité de niveau militaire pour applications civiles critiques."

Menaces Identifiées

  • GPS Spoofing : Falsification coordonnées navigation
  • Communication Hijacking : Interception commandes de vol
  • Malware Embarqué : Infection système de contrôle
  • Déni de Service : Perturbation communications critiques
  • Intrusion Physique : Accès non autorisé au matériel

Architecture Sécurisée

Modèle Zero Trust

graph TB
    subgraph ThrustBoundary["🛡️ Zero Trust Perimeter"]
        subgraph GroundStation["🏢 Station Sol Sécurisée"]
            Operator["Opérateur<br/>Authentifié"]
            SecureTerminal["Terminal Sécurisé<br/>Hardware HSM"]
            CertAuth["Autorité<br/>Certification"]
        end

        subgraph SecureComm["🔐 Communications Chiffrées"]
            Encryption["Chiffrement AES-256<br/>Clés Ephémères"]
            VPN["VPN IPSec<br/>Tunnel Sécurisé"]
            Mesh["Mesh Network<br/>Redondance"]
        end

        subgraph DroneSecure["🚁 Drone Sécurisé"]
            HSM["Hardware Security<br/>Module Intégré"]
            SecureBoot["Secure Boot<br/>Signature Verified"]
            IDS["Intrusion Detection<br/>Temps Réel"]
            Firewall["Firewall Embarqué<br/>Filtrage Trafic"]
        end

        subgraph DataProtection["🔒 Protection Données"]
            Encryption_Storage["Chiffrement<br/>Données Rest"]
            KeyManagement["Gestion Clés<br/>Distribuée"]
            BackupSecure["Backup Chiffré<br/>Multi-Site"]
        end
    end

    subgraph ThreatMonitoring["⚠️ Surveillance Menaces"]
        SIEM["SIEM Centralisé<br/>Corrélation Events"]
        ThreatIntel["Threat Intelligence<br/>Signatures MAJ"]
        IncidentResponse["Réponse Incident<br/>Automatisée"]
    end

    %% Flux sécurisés
    Operator --> SecureTerminal
    SecureTerminal --> Encryption
    Encryption --> VPN
    VPN --> Mesh
    Mesh --> HSM
    HSM --> SecureBoot
    SecureBoot --> IDS
    IDS --> Firewall

    %% Monitoring
    DroneSecure --> SIEM
    SecureComm --> SIEM
    SIEM --> ThreatIntel
    ThreatIntel --> IncidentResponse

    %% Protection données
    DroneSecure --> DataProtection
    DataProtection --> BackupSecure

    classDef secure fill:#10b981,stroke:#047857,color:#fff
    classDef threat fill:#ef4444,stroke:#dc2626,color:#fff
    classDef comm fill:#3b82f6,stroke:#1e40af,color:#fff
    classDef data fill:#f59e0b,stroke:#d97706,color:#000

    class GroundStation,DroneSecure secure
    class ThreatMonitoring threat
    class SecureComm comm
    class DataProtection data

Chiffrement Bout-en-Bout

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
import os
import json
import time

class SecureDroneComm:
    """Communication sécurisée drone avec chiffrement militaire"""

    def __init__(self):
        self.session_keys = {}
        self.message_counter = 0
        self.replay_window = set()

    def generate_session_key(self, drone_id: str) -> bytes:
        """Génération clé session éphémère"""

        # Génération clé AES-256 aléatoire
        session_key = os.urandom(32)  # 256 bits

        # Stockage sécurisé avec timestamp
        self.session_keys[drone_id] = {
            'key': session_key,
            'created_at': time.time(),
            'message_count': 0
        }

        return session_key

    def encrypt_command(self, drone_id: str, command_data: dict) -> bytes:
        """Chiffrement commande avec authentification"""

        # Vérification clé session
        if drone_id not in self.session_keys:
            raise ValueError(f"Pas de clé session pour drone {drone_id}")

        session_info = self.session_keys[drone_id]

        # Rotation automatique clés (chaque 1000 messages ou 1h)
        if (session_info['message_count'] > 1000 or 
            time.time() - session_info['created_at'] > 3600):
            self.generate_session_key(drone_id)
            session_info = self.session_keys[drone_id]

        # Préparation message
        message = {
            'timestamp': time.time(),
            'counter': self.message_counter,
            'drone_id': drone_id,
            'command': command_data
        }

        # Sérialisation
        plaintext = json.dumps(message, separators=(',', ':')).encode('utf-8')

        # Chiffrement AES-GCM (authentification intégrée)
        iv = os.urandom(12)  # 96 bits pour GCM
        cipher = Cipher(
            algorithms.AES(session_info['key']),
            modes.GCM(iv)
        )
        encryptor = cipher.encryptor()

        ciphertext = encryptor.update(plaintext) + encryptor.finalize()

        # Message final avec métadonnées
        encrypted_message = {
            'iv': iv.hex(),
            'ciphertext': ciphertext.hex(),
            'tag': encryptor.tag.hex(),
            'drone_id': drone_id
        }

        # Mise à jour compteurs
        self.message_counter += 1
        session_info['message_count'] += 1

        return json.dumps(encrypted_message).encode('utf-8')

    def decrypt_telemetry(self, encrypted_data: bytes) -> dict:
        """Déchiffrement télémétrie avec validation"""

        try:
            # Parse message
            message = json.loads(encrypted_data.decode('utf-8'))
            drone_id = message['drone_id']

            # Vérification clé session
            if drone_id not in self.session_keys:
                raise ValueError(f"Clé session inconnue: {drone_id}")

            session_key = self.session_keys[drone_id]['key']

            # Reconstruction éléments chiffrement
            iv = bytes.fromhex(message['iv'])
            ciphertext = bytes.fromhex(message['ciphertext'])
            tag = bytes.fromhex(message['tag'])

            # Déchiffrement AES-GCM
            cipher = Cipher(
                algorithms.AES(session_key),
                modes.GCM(iv, tag)
            )
            decryptor = cipher.decryptor()

            plaintext = decryptor.update(ciphertext) + decryptor.finalize()

            # Désérialisation
            decrypted_data = json.loads(plaintext.decode('utf-8'))

            # Validation anti-replay
            msg_counter = decrypted_data['counter']
            if msg_counter in self.replay_window:
                raise ValueError(f"Attaque replay détectée: {msg_counter}")

            # Mise à jour fenêtre anti-replay
            self.replay_window.add(msg_counter)
            if len(self.replay_window) > 1000:
                min_counter = min(self.replay_window)
                self.replay_window.remove(min_counter)

            return decrypted_data

        except Exception as e:
            raise ValueError(f"Déchiffrement échoué: {str(e)}")

Détection d'Intrusion

Système IDS Embarqué

import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
import threading
import queue
import time
from dataclasses import dataclass
from typing import Dict, List, Optional

@dataclass
class SecurityEvent:
    timestamp: float
    event_type: str
    severity: str  # 'low', 'medium', 'high', 'critical'
    source: str
    description: str
    raw_data: dict

class DroneIDS:
    """Système de détection d'intrusion embarqué"""

    def __init__(self):
        self.models = {
            'network': IsolationForest(contamination=0.1, random_state=42),
            'flight_pattern': IsolationForest(contamination=0.05, random_state=42),
            'system_behavior': IsolationForest(contamination=0.08, random_state=42)
        }

        self.scalers = {
            'network': StandardScaler(),
            'flight_pattern': StandardScaler(),
            'system_behavior': StandardScaler()
        }

        self.is_trained = False
        self.event_queue = queue.Queue()
        self.running = False

        # Baseline comportement normal
        self.normal_patterns = {
            'cpu_usage': (20, 80),     # Min, Max normal
            'memory_usage': (30, 70),
            'network_latency': (10, 100),
            'flight_speed': (0, 25),
            'altitude_change_rate': (-5, 5)
        }

    def train_baseline(self, training_data: Dict[str, np.ndarray]):
        """Entraînement baseline comportement normal"""

        for model_name, data in training_data.items():
            if model_name in self.models:
                # Normalisation
                scaled_data = self.scalers[model_name].fit_transform(data)

                # Entraînement modèle détection anomalies
                self.models[model_name].fit(scaled_data)

        self.is_trained = True
        print("Baseline IDS entraîné avec succès")

    def start_monitoring(self):
        """Démarrage surveillance temps réel"""
        self.running = True

        # Thread surveillance réseau
        network_thread = threading.Thread(target=self._monitor_network)
        network_thread.daemon = True
        network_thread.start()

        # Thread surveillance vol
        flight_thread = threading.Thread(target=self._monitor_flight)
        flight_thread.daemon = True
        flight_thread.start()

        # Thread surveillance système
        system_thread = threading.Thread(target=self._monitor_system)
        system_thread.daemon = True
        system_thread.start()

        # Thread traitement événements
        event_thread = threading.Thread(target=self._process_events)
        event_thread.daemon = True
        event_thread.start()

    def _monitor_network(self):
        """Surveillance trafic réseau"""
        while self.running:
            try:
                # Collecte métriques réseau
                network_metrics = self._collect_network_metrics()

                # Détection anomalies
                if self.is_trained:
                    anomaly_score = self._detect_network_anomaly(network_metrics)

                    if anomaly_score < -0.5:  # Seuil anomalie
                        event = SecurityEvent(
                            timestamp=time.time(),
                            event_type='network_anomaly',
                            severity=self._calculate_severity(anomaly_score),
                            source='network_monitor',
                            description=f'Anomalie réseau détectée: score={anomaly_score:.3f}',
                            raw_data=network_metrics
                        )
                        self.event_queue.put(event)

                time.sleep(1)  # Monitoring chaque seconde

            except Exception as e:
                print(f"Erreur monitoring réseau: {e}")

    def _monitor_flight(self):
        """Surveillance patterns de vol"""
        while self.running:
            try:
                # Collecte données vol
                flight_data = self._collect_flight_data()

                # Vérifications règles métier
                violations = self._check_flight_rules(flight_data)
                for violation in violations:
                    event = SecurityEvent(
                        timestamp=time.time(),
                        event_type='flight_violation',
                        severity=violation['severity'],
                        source='flight_monitor',
                        description=violation['description'],
                        raw_data=flight_data
                    )
                    self.event_queue.put(event)

                # Détection anomalies ML
                if self.is_trained:
                    anomaly_score = self._detect_flight_anomaly(flight_data)

                    if anomaly_score < -0.3:
                        event = SecurityEvent(
                            timestamp=time.time(),
                            event_type='flight_anomaly',
                            severity=self._calculate_severity(anomaly_score),
                            source='flight_monitor',
                            description=f'Pattern vol anormal: score={anomaly_score:.3f}',
                            raw_data=flight_data
                        )
                        self.event_queue.put(event)

                time.sleep(0.5)  # Monitoring vol plus fréquent

            except Exception as e:
                print(f"Erreur monitoring vol: {e}")

    def _check_flight_rules(self, flight_data: dict) -> List[dict]:
        """Vérification règles de sécurité vol"""
        violations = []

        # Vérification altitude max
        if flight_data.get('altitude', 0) > 120:  # 120m limite légale
            violations.append({
                'severity': 'high',
                'description': f"Altitude excessive: {flight_data['altitude']}m"
            })

        # Vérification vitesse
        if flight_data.get('speed', 0) > 30:  # 30 m/s limite
            violations.append({
                'severity': 'medium',
                'description': f"Vitesse excessive: {flight_data['speed']} m/s"
            })

        # Vérification zone interdite (géofencing)
        if self._in_no_fly_zone(flight_data.get('position')):
            violations.append({
                'severity': 'critical',
                'description': "Entrée en zone interdite détectée"
            })

        # Vérification batterie critique
        if flight_data.get('battery_level', 100) < 20:
            violations.append({
                'severity': 'high',
                'description': f"Niveau batterie critique: {flight_data['battery_level']}%"
            })

        return violations

    def _process_events(self):
        """Traitement événements sécurité"""
        while self.running:
            try:
                event = self.event_queue.get(timeout=1)

                # Log événement
                self._log_security_event(event)

                # Réponse automatique selon gravité
                if event.severity == 'critical':
                    self._handle_critical_event(event)
                elif event.severity == 'high':
                    self._handle_high_event(event)

                # Notification opérateur si nécessaire
                if event.severity in ['high', 'critical']:
                    self._notify_operator(event)

            except queue.Empty:
                continue
            except Exception as e:
                print(f"Erreur traitement événement: {e}")

    def _handle_critical_event(self, event: SecurityEvent):
        """Réponse automatique événement critique"""

        if event.event_type == 'flight_violation':
            # Activation RTL (Return to Launch) automatique
            self._trigger_rtl()

        elif event.event_type == 'network_intrusion':
            # Isolation réseau
            self._isolate_network()

        elif event.event_type == 'gps_spoofing':
            # Basculement navigation inertielle
            self._switch_to_inertial_nav()

        # Log action prise
        print(f"Action critique prise pour: {event.description}")

Protection GPS & Navigation

Anti-Spoofing GPS

import numpy as np
from scipy import signal
import threading
import time
from dataclasses import dataclass
from typing import List, Tuple, Optional

@dataclass
class GPSSignal:
    timestamp: float
    satellite_id: int
    signal_strength: float
    pseudorange: float
    carrier_phase: float
    doppler_shift: float
    elevation_angle: float
    azimuth_angle: float

class GPSAntiSpoofing:
    """Système de protection anti-spoofing GPS"""

    def __init__(self):
        self.baseline_signals = {}
        self.signal_history = []
        self.spoofing_detected = False
        self.confidence_threshold = 0.8

        # Référence signaux satellites authentiques
        self.authentic_constellation = self._load_constellation_data()

    def analyze_gps_signals(self, signals: List[GPSSignal]) -> dict:
        """Analyse signaux GPS pour détection spoofing"""

        analysis_result = {
            'spoofing_probability': 0.0,
            'suspicious_satellites': [],
            'authentication_score': 1.0,
            'recommendations': []
        }

        # 1. Vérification cohérence constellation
        constellation_score = self._check_constellation_consistency(signals)

        # 2. Analyse patterns temporels
        temporal_score = self._analyze_temporal_patterns(signals)

        # 3. Vérification puissance signaux
        power_score = self._check_signal_power(signals)

        # 4. Corrélation croisée signaux
        correlation_score = self._cross_correlate_signals(signals)

        # Score global spoofing
        spoofing_probability = 1.0 - (
            constellation_score * 0.3 +
            temporal_score * 0.25 +
            power_score * 0.25 +
            correlation_score * 0.2
        )

        analysis_result['spoofing_probability'] = spoofing_probability
        analysis_result['authentication_score'] = 1.0 - spoofing_probability

        # Détection spoofing
        if spoofing_probability > self.confidence_threshold:
            self.spoofing_detected = True
            analysis_result['recommendations'] = self._generate_countermeasures()

        return analysis_result

    def _check_constellation_consistency(self, signals: List[GPSSignal]) -> float:
        """Vérification cohérence constellation satellites"""

        if not signals:
            return 0.0

        consistency_score = 1.0

        # Vérification nombre satellites (minimum 4 pour position 3D)
        if len(signals) < 4:
            consistency_score *= 0.5
        elif len(signals) > 12:  # Trop de satellites = suspect
            consistency_score *= 0.7

        # Vérification géométrie constellation
        elevation_angles = [s.elevation_angle for s in signals]
        azimuth_angles = [s.azimuth_angle for s in signals]

        # GDOP (Geometric Dilution of Precision) check
        gdop = self._calculate_gdop(elevation_angles, azimuth_angles)
        if gdop > 10:  # GDOP élevé = géométrie suspecte
            consistency_score *= 0.6

        # Vérification satellites visibles selon almanach
        for signal in signals:
            if not self._is_satellite_visible(signal):
                consistency_score *= 0.8

        return consistency_score

    def _analyze_temporal_patterns(self, signals: List[GPSSignal]) -> float:
        """Analyse patterns temporels pour détection anomalies"""

        temporal_score = 1.0

        # Stockage historique
        self.signal_history.append({
            'timestamp': time.time(),
            'signals': signals
        })

        # Garder seulement dernières 60 secondes
        cutoff_time = time.time() - 60
        self.signal_history = [
            entry for entry in self.signal_history 
            if entry['timestamp'] > cutoff_time
        ]

        if len(self.signal_history) < 5:
            return temporal_score

        # Analyse variations Doppler
        for sat_id in set(s.satellite_id for s in signals):
            doppler_history = []
            for entry in self.signal_history[-10:]:
                sat_signals = [s for s in entry['signals'] if s.satellite_id == sat_id]
                if sat_signals:
                    doppler_history.append(sat_signals[0].doppler_shift)

            if len(doppler_history) > 3:
                # Vérification continuité Doppler
                doppler_gradient = np.gradient(doppler_history)
                if np.std(doppler_gradient) > 50:  # Variations brutales
                    temporal_score *= 0.8

        return temporal_score

    def _check_signal_power(self, signals: List[GPSSignal]) -> float:
        """Vérification cohérence puissance signaux"""

        power_score = 1.0

        for signal in signals:
            # Puissance attendue selon angle élévation
            expected_power = self._calculate_expected_power(signal.elevation_angle)
            power_deviation = abs(signal.signal_strength - expected_power)

            # Signaux trop forts = potentiel spoofing
            if signal.signal_strength > expected_power + 10:
                power_score *= 0.7

            # Signaux uniformes = suspect (spoofing souvent uniformise)
            if power_deviation < 2:  # Trop uniform
                power_score *= 0.9

        # Vérification variance puissance globale
        powers = [s.signal_strength for s in signals]
        if np.std(powers) < 3:  # Variance trop faible
            power_score *= 0.8

        return power_score

    def generate_secure_position(self, gps_signals: List[GPSSignal], 
                                imu_data: dict, 
                                visual_odometry: dict) -> dict:
        """Calcul position sécurisée avec fusion multi-capteurs"""

        # Analyse spoofing GPS
        spoofing_analysis = self.analyze_gps_signals(gps_signals)

        position_result = {
            'position': None,
            'confidence': 0.0,
            'source': 'unknown',
            'spoofing_detected': spoofing_analysis['spoofing_probability'] > 0.8
        }

        if not position_result['spoofing_detected']:
            # GPS considéré fiable
            gps_position = self._calculate_gps_position(gps_signals)
            position_result.update({
                'position': gps_position,
                'confidence': spoofing_analysis['authentication_score'],
                'source': 'gps'
            })
        else:
            # Fallback navigation inertielle + vision
            backup_position = self._calculate_backup_position(imu_data, visual_odometry)
            position_result.update({
                'position': backup_position,
                'confidence': 0.6,  # Confiance réduite sans GPS
                'source': 'inertial_visual'
            })

        return position_result

Blockchain pour Authentification

Système d'Authentification Distribué

import hashlib
import json
import time
from dataclasses import dataclass
from typing import List, Dict, Optional
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import rsa, padding

@dataclass
class DroneIdentity:
    drone_id: str
    public_key: bytes
    manufacturer: str
    model: str
    firmware_version: str
    certification_level: str
    registration_timestamp: float

@dataclass
class AuthenticationBlock:
    index: int
    timestamp: float
    drone_authentications: List[dict]
    previous_hash: str
    nonce: int
    hash: str

class DroneAuthBlockchain:
    """Blockchain pour authentification drone distribuée"""

    def __init__(self):
        self.chain: List[AuthenticationBlock] = []
        self.pending_authentications = []
        self.registered_drones: Dict[str, DroneIdentity] = {}
        self.difficulty = 4  # Difficulté mining

        # Création bloc genesis
        self._create_genesis_block()

    def _create_genesis_block(self):
        """Création bloc genesis"""
        genesis_block = AuthenticationBlock(
            index=0,
            timestamp=time.time(),
            drone_authentications=[],
            previous_hash="0",
            nonce=0,
            hash=""
        )
        genesis_block.hash = self._calculate_hash(genesis_block)
        self.chain.append(genesis_block)

    def register_drone(self, drone_identity: DroneIdentity) -> bool:
        """Enregistrement drone dans blockchain"""

        # Vérification unicité ID
        if drone_identity.drone_id in self.registered_drones:
            return False

        # Validation certificat
        if not self._validate_drone_certificate(drone_identity):
            return False

        # Ajout à la registry
        self.registered_drones[drone_identity.drone_id] = drone_identity

        # Transaction d'enregistrement
        registration_tx = {
            'type': 'registration',
            'drone_id': drone_identity.drone_id,
            'public_key': drone_identity.public_key.hex(),
            'timestamp': time.time(),
            'signature': self._sign_registration(drone_identity)
        }

        self.pending_authentications.append(registration_tx)
        return True

    def authenticate_drone(self, drone_id: str, challenge_response: dict) -> dict:
        """Authentification drone via défi cryptographique"""

        if drone_id not in self.registered_drones:
            return {'authenticated': False, 'reason': 'Drone non enregistré'}

        drone_identity = self.registered_drones[drone_id]

        # Vérification signature challenge
        if not self._verify_challenge_response(drone_identity, challenge_response):
            return {'authenticated': False, 'reason': 'Challenge échoué'}

        # Vérification réputation drone
        reputation_score = self._calculate_reputation(drone_id)
        if reputation_score < 0.5:
            return {'authenticated': False, 'reason': 'Réputation insuffisante'}

        # Transaction d'authentification
        auth_tx = {
            'type': 'authentication',
            'drone_id': drone_id,
            'timestamp': time.time(),
            'challenge_hash': challenge_response['challenge_hash'],
            'reputation_score': reputation_score
        }

        self.pending_authentications.append(auth_tx)

        return {
            'authenticated': True,
            'session_token': self._generate_session_token(drone_id),
            'reputation_score': reputation_score
        }

    def mine_block(self) -> Optional[AuthenticationBlock]:
        """Mining nouveau bloc authentifications"""

        if not self.pending_authentications:
            return None

        previous_block = self.get_latest_block()

        new_block = AuthenticationBlock(
            index=previous_block.index + 1,
            timestamp=time.time(),
            drone_authentications=self.pending_authentications[:],
            previous_hash=previous_block.hash,
            nonce=0,
            hash=""
        )

        # Proof of Work
        new_block.hash = self._mine_block_hash(new_block)

        # Ajout à la chaîne
        self.chain.append(new_block)

        # Nettoyage transactions pending
        self.pending_authentications = []

        return new_block

    def _mine_block_hash(self, block: AuthenticationBlock) -> str:
        """Mining hash avec Proof of Work"""

        target = "0" * self.difficulty

        while True:
            block.nonce += 1
            calculated_hash = self._calculate_hash(block)

            if calculated_hash.startswith(target):
                return calculated_hash

    def _calculate_hash(self, block: AuthenticationBlock) -> str:
        """Calcul hash bloc"""

        block_string = json.dumps({
            'index': block.index,
            'timestamp': block.timestamp,
            'authentications': block.drone_authentications,
            'previous_hash': block.previous_hash,
            'nonce': block.nonce
        }, sort_keys=True)

        return hashlib.sha256(block_string.encode()).hexdigest()

    def validate_chain(self) -> bool:
        """Validation intégrité blockchain"""

        for i in range(1, len(self.chain)):
            current_block = self.chain[i]
            previous_block = self.chain[i-1]

            # Vérification hash bloc
            if current_block.hash != self._calculate_hash(current_block):
                return False

            # Vérification lien précédent
            if current_block.previous_hash != previous_block.hash:
                return False

            # Vérification Proof of Work
            if not current_block.hash.startswith("0" * self.difficulty):
                return False

        return True

    def get_drone_authentication_history(self, drone_id: str) -> List[dict]:
        """Historique authentifications drone"""

        history = []

        for block in self.chain:
            for auth in block.drone_authentications:
                if auth.get('drone_id') == drone_id:
                    history.append({
                        'block_index': block.index,
                        'timestamp': auth['timestamp'],
                        'type': auth['type'],
                        'details': auth
                    })

        return sorted(history, key=lambda x: x['timestamp'])

    def _calculate_reputation(self, drone_id: str) -> float:
        """Calcul score réputation drone"""

        history = self.get_drone_authentication_history(drone_id)

        if not history:
            return 0.5  # Score neutre

        # Facteurs réputation
        successful_auths = sum(1 for h in history if h['type'] == 'authentication')
        failed_auths = sum(1 for h in history if h['type'] == 'failed_authentication')
        recent_activity = sum(1 for h in history if time.time() - h['timestamp'] < 86400)  # 24h

        # Score basé sur succès/échecs et activité récente
        success_rate = successful_auths / max(successful_auths + failed_auths, 1)
        activity_bonus = min(recent_activity / 10, 0.2)

        reputation = success_rate + activity_bonus
        return min(max(reputation, 0.0), 1.0)

Réponse aux Incidents

Système de Réponse Automatisée

import threading
import time
import json
from enum import Enum
from dataclasses import dataclass
from typing import Dict, List, Callable, Optional

class IncidentSeverity(Enum):
    LOW = 1
    MEDIUM = 2
    HIGH = 3
    CRITICAL = 4

@dataclass
class SecurityIncident:
    incident_id: str
    timestamp: float
    severity: IncidentSeverity
    type: str
    description: str
    affected_systems: List[str]
    raw_data: dict
    status: str = "detected"

class IncidentResponseSystem:
    """Système de réponse automatisée aux incidents de sécurité"""

    def __init__(self):
        self.incidents: Dict[str, SecurityIncident] = {}
        self.response_handlers: Dict[str, Callable] = {}
        self.escalation_rules = {}
        self.running = False

        # Enregistrement handlers par défaut
        self._register_default_handlers()

    def _register_default_handlers(self):
        """Enregistrement handlers réponse par défaut"""

        self.response_handlers.update({
            'gps_spoofing': self._handle_gps_spoofing,
            'communication_hijacking': self._handle_comm_hijacking,
            'malware_detection': self._handle_malware,
            'unauthorized_access': self._handle_unauthorized_access,
            'network_intrusion': self._handle_network_intrusion,
            'physical_tampering': self._handle_physical_tampering
        })

        # Règles d'escalation
        self.escalation_rules = {
            IncidentSeverity.CRITICAL: {
                'immediate_response': True,
                'operator_notification': True,
                'emergency_landing': True,
                'system_isolation': True
            },
            IncidentSeverity.HIGH: {
                'immediate_response': True,
                'operator_notification': True,
                'emergency_landing': False,
                'system_isolation': False
            },
            IncidentSeverity.MEDIUM: {
                'immediate_response': False,
                'operator_notification': True,
                'emergency_landing': False,
                'system_isolation': False
            }
        }

    def report_incident(self, incident: SecurityIncident) -> str:
        """Signalement nouvel incident"""

        # Stockage incident
        self.incidents[incident.incident_id] = incident

        # Log incident
        self._log_incident(incident)

        # Déclenchement réponse automatique
        if incident.severity in [IncidentSeverity.HIGH, IncidentSeverity.CRITICAL]:
            threading.Thread(
                target=self._execute_immediate_response,
                args=(incident,),
                daemon=True
            ).start()

        return incident.incident_id

    def _execute_immediate_response(self, incident: SecurityIncident):
        """Exécution réponse immédiate"""

        try:
            # Mise à jour statut
            incident.status = "responding"

            # Application règles escalation
            rules = self.escalation_rules.get(incident.severity, {})

            if rules.get('system_isolation'):
                self._isolate_affected_systems(incident.affected_systems)

            if rules.get('emergency_landing'):
                self._trigger_emergency_landing()

            if rules.get('operator_notification'):
                self._notify_operator(incident)

            # Handler spécifique type incident
            if incident.type in self.response_handlers:
                self.response_handlers[incident.type](incident)

            # Collecte preuves forensiques
            self._collect_forensic_evidence(incident)

            incident.status = "mitigated"

        except Exception as e:
            incident.status = "response_failed"
            print(f"Échec réponse incident {incident.incident_id}: {e}")

    def _handle_gps_spoofing(self, incident: SecurityIncident):
        """Réponse spoofing GPS"""

        # Basculement navigation inertielle
        self._switch_to_inertial_navigation()

        # Activation mode sécurisé
        self._enable_secure_mode()

        # Validation position via capteurs alternatifs
        self._validate_position_alternative_sensors()

        print(f"Réponse GPS spoofing activée pour incident {incident.incident_id}")

    def _handle_comm_hijacking(self, incident: SecurityIncident):
        """Réponse détournement communications"""

        # Rotation clés chiffrement d'urgence
        self._emergency_key_rotation()

        # Basculement fréquences backup
        self._switch_to_backup_frequencies()

        # Activation protocole authentification renforcée
        self._enable_enhanced_authentication()

        print(f"Réponse comm hijacking activée pour incident {incident.incident_id}")

    def _handle_malware(self, incident: SecurityIncident):
        """Réponse détection malware"""

        # Isolation processus suspects
        affected_processes = incident.raw_data.get('processes', [])
        for process in affected_processes:
            self._quarantine_process(process)

        # Scan sécurité complet
        self._initiate_security_scan()

        # Sauvegarde état système sain
        self._backup_clean_system_state()

        print(f"Réponse malware activée pour incident {incident.incident_id}")

    def _collect_forensic_evidence(self, incident: SecurityIncident):
        """Collecte preuves forensiques"""

        evidence = {
            'timestamp': time.time(),
            'incident_id': incident.incident_id,
            'system_state': self._capture_system_state(),
            'network_logs': self._extract_network_logs(),
            'flight_data': self._extract_flight_data(),
            'security_events': self._extract_security_events()
        }

        # Stockage sécurisé preuves
        evidence_file = f"/secure/forensics/{incident.incident_id}_evidence.json"
        with open(evidence_file, 'w') as f:
            json.dump(evidence, f, indent=2)

        # Hash intégrité
        evidence_hash = hashlib.sha256(
            json.dumps(evidence, sort_keys=True).encode()
        ).hexdigest()

        print(f"Preuves forensiques collectées: {evidence_hash}")

    def generate_incident_report(self, incident_id: str) -> dict:
        """Génération rapport incident détaillé"""

        if incident_id not in self.incidents:
            return {'error': 'Incident introuvable'}

        incident = self.incidents[incident_id]

        report = {
            'incident_summary': {
                'id': incident.incident_id,
                'timestamp': incident.timestamp,
                'severity': incident.severity.name,
                'type': incident.type,
                'description': incident.description,
                'status': incident.status
            },
            'impact_analysis': self._analyze_incident_impact(incident),
            'response_actions': self._get_response_actions(incident),
            'lessons_learned': self._extract_lessons_learned(incident),
            'recommendations': self._generate_recommendations(incident)
        }

        return report

Projets de Recherche

Système de Trust Distribué

  • Objectif : Réseau de confiance entre drones autonomes
  • Technologies : Blockchain, Zero-Knowledge Proofs, TEE
  • Applications : Essaims coordonnés, missions critiques

IA Explicable pour Décisions Critiques

  • Objectif : Comprendre et auditer décisions IA en vol
  • Technologies : LIME, SHAP, Attention Mechanisms
  • Applications : Certification, conformité réglementaire

Chiffrement Homomorphe pour Données Sensibles

  • Objectif : Calculs sur données chiffrées sans déchiffrement
  • Technologies : Microsoft SEAL, IBM HELib
  • Applications : Analytics distribuées, privacy-preserving